The role of V5/MT+ in the control of catching movements: an rTMS study.

نویسندگان

  • Thomas Schenk
  • Amanda Ellison
  • Nichola Rice
  • A David Milner
چکیده

Milner and Goodale described a model which distinguishes between two visual streams in the brain. It is claimed that the ventral stream serves object recognition (i.e. vision for perception), and the dorsal streams provides visual information for the guidance of action (i.e. vision for action). This model is supported by evidence from the domain of spatial vision, but it remains unclear how motion vision fits into that model. More specifically, it is unclear how the motion complex V5/MT contributes to vision for perception and vision for action. We addressed this question in an earlier study with the V5-lesioned patient LM. Can a motion-blind patient reach for moving objects? We found that she is not only impaired in perceptual tasks but also in catching, suggesting a role for V5/MT+ in vision for both perception and action. However, LM's lesion goes beyond V5/MT+ into more dorsal regions. It is thus possible, that the catching deficit was not produced by damage to V5/MT+ itself. In this case, one would expect that selective interference with V5/MT+ would have no effect on catching. In the present study we tested this prediction by applying rTMS over V5/MT+ of the left hemisphere while healthy subjects were either performing a catching or a reaching task. We found that V5-TMS reduced the speed of the catching but not the reaching response. These results confirm that V5/MT+ is not only involved in perceptual but also in visuomotor tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of areas MT+/V5 and SPOC in spatial and temporal control of manual interception: an rTMS study

Manual interception, such as catching or hitting an approaching ball, requires the hand to contact a moving object at the right location and at the right time. Many studies have examined the neural mechanisms underlying the spatial aspects of goal-directed reaching, but the neural basis of the spatial and temporal aspects of manual interception are largely unknown. Here, we used repetitive tran...

متن کامل

The role of V5/MT+ in the control of catching movements: a rTMS study

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be...

متن کامل

Induced deficits in speed perception by transcranial magnetic stimulation of human cortical areas V5/MT+ and V3A.

In this report, we evaluate the role of visual areas responsive to motion in the human brain in the perception of stimulus speed. We first identified and localized V1, V3A, and V5/MT+ in individual participants on the basis of blood oxygenation level-dependent responses obtained in retinotopic mapping experiments and responses to moving gratings. Repetitive transcranial magnetic stimulation (rT...

متن کامل

The neural basis of the Enigma illusion: a transcranial magnetic stimulation study.

The aim of this study was to test the role of the visual primary (V1) and the middle temporal area (V5/MT) in the illusory motion perception evoked by the Enigma figure. The Enigma figure induces a visual illusion that is characterized by apparent rotatory motion in the presence of a static figure. By means of repetitive transcranial magnetic stimulation (rTMS) we show that V5/MT is causally li...

متن کامل

Visual trajectory perception in humans: is it lateralized? Clues from online rTMS of the middle-temporal complex (MT/V5).

Inconsistent observations have been reported in the literature regarding the asymmetrical contribution of higher visual areas of the left and right hemispheres to visual motion processing. In the present experiment, we tested for hemispheric asymmetry of the middle-temporal complex (V5/MT), which is a key-component of the visual motion network, by using rTMS applied over left or right V5/MT dur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuropsychologia

دوره 43 2  شماره 

صفحات  -

تاریخ انتشار 2005